165 research outputs found

    Cosmic Ray Origin, Acceleration and Propagation

    Get PDF
    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the XXVIth International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.Comment: To appear in the Summary-Rapporteur Volume of the 26th International Cosmic Ray Conference, ed. B. L. Dingus (AIP, New York, 2000). Latex, 16 pages, no figures (Minor correction to text

    Modelling Hard Gamma-Ray Emission From Supernova Remnants

    Get PDF
    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a ``Holy Grail'' for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.Comment: 10 pages, 2 figures, to appear in Proc. of Snowbird TeV Gamma-Ray Workshop ed. B. L. Dingus (AIP, New York, 2000) (Replacement updates Fig. 2 and references

    A Photon Splitting Cascade Model of Soft Gamma-Ray Repeaters

    Full text link
    The spectra of soft gamma-ray repeaters (SGRs), with the exception of the March 5, 1979 main burst, are characterized by high-energy cutoffs around 30 keV and low-energy turnovers that are much steeper than a Wien spectrum. Baring (1995) found that the spectra of cascades due to photon splitting in a very strong, homogeneous magnetic field can soften spectra and produce good fits to the soft spectra of SGRs. Magnetic field strengths somewhat above the QED critical field strength BcrB_{\rm cr}, where Bcr=4.413Ă—1013B_{\rm cr} = 4.413 \times 10^{13} G, is required to produce cutoffs at 30-40 keV. We have improved upon this model by computing Monte Carlo photon splitting cascade spectra in a neutron star dipole magnetic field, including effects of curved space-time in a Schwarzschild metric. We investigate spectra produced by photons emitted at different locations and observer angles. We find that the general results of Baring hold for surface emission throughout most of the magnetosphere, but that emission in equatorial regions can best reproduce the constancy of SGR spectra observed from different bursts.Comment: 5 pages in LATEX using REVTEX aipbook.sty + 4 figures (uuencoded, compressed postscript), to appear in the proceedings of the Third Huntsville Workshop on Gamma-Ray Bursts, eds. C. Kouveliotou, M. S. Briggs and G. J. Fishman (New York, AIP
    • …
    corecore